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Abstract
The dynamics of a phase ordering system with non-conserved order parameter
under a plain shear flow with rate γ is solved analytically in the large-N limit.
A phase transition is observed at a critical temperature Tc(γ ). After a quench
from a high temperature equilibrium state to a lower temperature T a non-
equilibrium stationary state is entered when T > Tc(γ ), while aging dynamics
characterizes the phases with T � Tc(γ ). Two-time quantities are computed
and the off-equilibrium generalization of the fluctuation–dissipation theorem
is provided.

PACS numbers: 05.70.Ln, 64.75.+g, 83.50.Ax

1. Introduction

In the field of modern statistical mechanics many efforts have been devoted to understanding
the properties of non-equilibrium. These studies were promoted by the recognition that many
relevant systems, such as glasses and coarsening systems, are intrinsically far from equilibrium
and, therefore, cannot be described by theories formulated as extensions of Gibbs statistical
mechanics. Instead, specific concepts relative to the non-equilibrium state must be developed.
A promising subject in this field is the attempt to build an out of equilibrium fluctuation–
dissipation theorem (FDT). Specifically, the aim of these studies is to investigate whether the
relation between the (integrated) response function χ and the autocorrelation function D is
meaningful and bears some relevant information regarding the non-equilibrium state. There
are several reasons for expecting this, the most natural being induction from the equilibrium
case. In equilibrium these two quantities are linearly related by means of the standard FDT
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and a fundamental quantity, the temperature of the system, appears as the coefficient of this
relation. For off-equilibrium systems we do not have nowadays an analogous theorem, of
such a wide generality, but conjectures, indications or, sometimes, proofs exist claiming that,
in restricted contexts, the relation between χ and D can be inferred on general grounds. In
particular, the slope of the curve χ(D) has been interpreted as the effective temperature of the
system, different from that of the thermal bath.

These concepts, which were originally developed in the study of turbulence [1], have been
successively applied to the glassy state [2, 3] and, more generally, to aging systems [4] where
the non-equilibrium state is generally determined by the change of a thermodynamic control
parameter, as in a temperature quench.

A different non-equilibrium situation is very often considered because of its physical
relevance: the case of driven systems. These systems are subjected to an external forcing that
prevents them attaining equilibrium. Examples of this situation range from systems subjected
to a force which does not derive from a potential, such as sheared fluids or conductor wires
with a potential difference applied at their ends, to systems with externally imposed thermal
gradients or magnetic materials under the action of an oscillatory magnetic field and tapped
materials. Despite many studies on this subject [5] much less is known about the effect of the
drive on the fluctuation–dissipation relation, although some progress has been made recently
[3, 6].

The complexity of the glassy state and the difficulty of both analytical and numerical
results in this field make the task of understanding the mechanisms whereby the FDT can be
generalized a hard question. Therefore, in this paper we focus on phase ordering systems
which, besides being physically interesting in their own right, can be regarded as simple
paradigms of aging behaviour. We solve exactly the dynamics of a model quenched from an
initial disordered state under the action of an external driving field. This kind of process is
relevant in many physical contexts, as will be discussed later. We consider a coarse-grained
system described by the usual double-well ϕ4 Hamiltonian where ϕ is a scalar order parameter
field. A Langevin dynamics is considered and the order parameter is not conserved. The
driving field is a planar shear or Couette flow. This model, without the shear flow, is referred
to in the literature as model A. The choice of this particular flow, besides analytical tractability,
is also motivated by its practical relevance, which appears clearly in the physics of complex
fluids and binary mixtures, where the behaviour of the stress as a function of the shear rate
is one of the main characterizations of fluid systems. Moreover, the structure of binary and
complex fluids is strongly affected by the flow and this is relevant in many applications [7]
and interesting for its theoretical implications. In the phase separation of binary mixtures, for
instance, it was found that not only the morphology but also the laws of dynamical scaling are
affected by the shear-induced anisotropy [8, 9] and new phenomena related to the presence of
stress in segregating systems, such as logarithmic-time periodic oscillations [10] and violation
of dynamical scaling [11], have been observed.

In this paper we focus on a non-conserved order parameter; however we believe that our
study could also be useful as a preliminary step for understanding more complex systems with
conserved ordered parameter. On its own the model of this paper can describe the behaviour
of liquid crystals undergoing the isotropic–nematic transition where the order parameter is not
conserved [12]. The phase separation properties of this model have been studied in [13] where
only the behaviour of one-time correlations was considered.

The role of the non-linear term in the ϕ4 Hamiltonian is crucial for quenching below and
at the critical temperature. However its presence makes the analytical study of the model
impossible unless one considers approximate theories. Among these the so-called large-N
limit has played a prominent role in the study of phase separation. The approximation takes



Correlation functions and fluctuation–dissipation relation in driven phase ordering systems 4731

into account a vectorial system with an infinite number of components N. This model, which
can be solved by a self-consistent closure, is one of the few cases where it is possible to
illustrate the out-of-equilibrium behaviour of a coarsening system by exact calculations [12].

In the case without shear the large-N approximation captures the essence of the
phenomenon at a semi-quantitative level [14]. In this work we use this approximation to
calculate the two-time correlation function showing how the dynamical exponents are affected
by the presence of the flow. The response function can also be exactly computed allowing a
careful discussion of the behaviour of the fluctuation–dissipation relation.

The plan of the paper is the following. In section 2 the model is defined and in section 3
its stationary critical properties are discussed. In section 4 the self-consistent condition
is explicitly worked out and one-time quantities are computed. Two-time quantities, the
autocorrelation function and the response function, are studied in sections 5 and 6. The
violation of the FDT is considered in section 7 and a final discussion is presented in section 8.
Appendices A–D, containing some mathematical details, complete the paper.

2. The model

We consider a system with dynamics described by the equations

∂ϕα(�x, t)

∂t
+ �∇ · (ϕα(�x, t)�v) = −�

δH[�ϕ]

δϕα(�x, t)
+ ηα(�x, t) α = 1, . . . , N (1)

where {ϕα} are the N components of the vectorial order parameter. For instance, in the case of
magnetic systems, �ϕ is the local magnetization, � is a transport coefficient and the Gaussian
white noise η, representing thermal fluctuations, has values

〈ηα(�x, t)〉 = 0 〈ηα(�x, t)ηβ(�x ′, t ′)〉 = 2T δαβ�δ(�x − �x′
)δ(t − t ′) (2)

where T is the temperature of the thermal bath. Without the convective term on the left-hand
side, equation (1) would be the usual Langevin equation which governs the purely relaxational
dynamics of a system with non-conserved order parameter and Hamiltonian H[�ϕ]. In that
case relations (2) would assure that in thermodynamic equilibrium at temperature T the
fluctuation–dissipation theorem is verified. Here equations (2) are supposed to hold on the
basis of local equilibrium [5, 15]. More precisely, it is assumed that the non-equilibrium
system can be subdivided into cells small enough that any thermodynamic property—which
in non-equilibrium situations may depend on space—varies slightly over one cell, but large
enough that equilibrium statistical mechanics holds within each cell [16]. Furthermore, since
thermodynamic properties out of equilibrium may depend on time, the characteristic time
over which a macroscopic fluctuation dies away within one cell must be much smaller than
the typical evolution time of the system. This implies that over intervals much smaller than
this evolution time local equilibrium is maintained in each cell and the fluctuation–dissipation
theorem holds. This will be recovered in section 7.

The velocity �v in equation (1) is chosen to be the steady planar shear flow

�v = γy�ex (3)

where γ is the spatially homogeneous shear rate and �ex is a unit vector in the flow direction.
We observe that, in spite of the presence of a velocity field proportional to a space coordinate,
translational invariance still holds, since a shift of a in the y-direction is equivalent to a Galilean
transformation to a new reference frame globally moving with an added velocity aγ in the
x-direction. This allows us in the following to introduce Fourier transforms and the standard
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definition of the structure factor [8, 15]. The Hamiltonian has the Ginzburg–Landau form

H[�ϕ] =
∫

V

ddx

[
1

2
|∇ �ϕ|2 +

r

2
�ϕ2 +

g

4N
(�ϕ2)2

]
(4)

where r < 0, g > 0 and V is the volume of the system. We will be interested in processes
where the system is initially in the equilibrium (γ = 0) infinite temperature state with
expectations {

〈ϕα(�x, 0)〉 = 0

〈ϕα(�x, 0)ϕβ(�x′
, 0)〉 = 
0δαβδ(�x − �x′

)
(5)

and then is suddenly put in contact with a heat bath at temperature T, and subjected to the
shear flow. 
0 is a constant.

In the large-N limit [12] the equation of motion for the Fourier transform ϕα(�k, t) =∫
V

ddx ϕα(�x, t) exp(i�k · �x) takes the linear form

∂ϕα(�k, t)

∂t
− γ kx

∂ϕα(�k, t)

∂ky

= −�[k2 + I (t)]ϕα(�k, t) + ηα(�k, t) (6)

where

〈ηα(�k, t)〉 = 0 〈ηα(�k, t)ηβ(�k′
, t ′)〉 = 2T δαβ�V δ�k,−�k′δ(t − t ′) (7)

and the function

I (t) = r +
g

N
〈�ϕ2(�x, t)〉 (8)

has to be calculated self-consistently. The quantity 〈�ϕ2(�x, t)〉 can be expressed as

1

N
〈�ϕ2(�x, t)〉 = 1

V

∑
�k

C(�k, t) (9)

where the structure factor

C(�k, t) = 1

NV
〈�ϕ(�k, t) · �ϕ(−�k, t)〉 (10)

is the solution of the equation

∂C(�k, t)
∂t

− γ kx

∂C(�k, t)

∂ky

= −2�[k2 + I (t)]C(�k, t) + 2�T . (11)

The momentum sum in equation (9) extends up to a phenomenological ultraviolet cut-off �.

3. Stationary properties

Letting ∂C(�k, t)/∂t = 0 in equation (11), and setting � = 1, the stationary form of the
structure factor reads [15]

C(�k) = 2T

∫ ∞

0
e−2

∫ z

0 K2(t ′) dt ′−2zξ−2
⊥ dz (12)

where

�K(s) = �k + γ skx�ey (13)

and

ξ−2
⊥ = lim

t→∞ I (t) = r +
g

V

∑
�k

C(�k). (14)
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This quantity plays the role of a transverse correlation length, because the modes of C(�k) with
kx = 0 take the usual Ornstein–Zernike form

C(kx = 0, �k⊥) = T

k2
⊥ + ξ−2

⊥
. (15)

Inserting equation (12) into equation (14) one has

ξ−2
⊥ = r +

g

V
2T

∑
�k

∫ ∞

0
e−2

∫ z

0 K2(t ′) dt ′−2zξ−2
⊥ dz. (16)

This equation can be conveniently solved separating the �k = 0 term under the sum. Then, for
very large volumes

ξ−2
⊥ = r + gT P(ξ−2

⊥ ) + g
T

V ξ−2
⊥

(17)

where

P(ξ−2
⊥ ) = 2

∫
ddk

(2π)d
e−k2/�2

∫ ∞

0
e−2

∫ z

0 K2(t ′) dt ′−2zξ−2
⊥ dz. (18)

The existence of a microscopic lengthscale proportional to �−1 corresponds to the presence
of a microscopic relaxation time

τM = (2�2)−1 (19)

which has to be compared with the shear flow timescale

τs = γ −1. (20)

As usual, it is assumed [8, 16] that the flow does not distort the structure of the system at the
microscopic level so that τM 	 τs and

A ≡ 2�2

γ
� 1. (21)

In the following we will concentrate on the particular cases d = 2 and d = 3. The function
P(x) is a non-negative monotonically decreasing function with the maximum value at x = 0.
It is related through equation (71) to the function f L(x) calculated in appendix A and, from
equations (79) and (86), its value at x = 0 is given by

P(0) =




1

4π
(ln(

√
12A) + ln 2) d = 2

1

2(2π)3/2

(√
γA − �2(3/4)

√
γ√

2π31/4

)
d = 3

(22)

where �(3/4) is the Gamma function evaluated at 3/4. By graphical analysis one can easily
show that equation (17) admits a solution with a finite value of ξ−2

⊥ for all T. However, there
exists a critical value of the temperature Tc(γ ) defined by

r + gTc(γ )P (0) = 0 (23)

such that for T > Tc(γ ) the solution is independent of the volume, while for T � Tc(γ ) it
does depend on V . From equations (22) and (23) one has

Tc(γ ) =
{(

4πM2
0

)/
ln(A) d = 2

Tc(γ = 0)
[
1 − �2(3/4)3−1/4√2π/A

]−1
d = 3

(24)

with M2
0 = −r/g and Tc(γ = 0) = 4M2

0π3/2/�. Note that the effect of the flow is to increase
the value of the critical temperature with respect to the case with γ = 0 [17], according to
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Figure 1. ξ⊥ is shown against T for different values of γ in d = 3 with � = 1,−r = g = 1. The
inset shows the same function plotted against [T − Tc(γ )]/Tc(γ ). The reference line below the
data curves represents the expected slope 1/2 (equation (25)). γ is measured in units of �.

Tc(γ ) ∼ 1/|lnγ | in d = 2 and Tc(γ ) − Tc(0) ∝ √
γ in d = 3. In d = 2 this produces

a qualitative difference because a phase transition occurs at a finite temperature, differently
from the unsheared case.

Finally, concerning the behaviour of the transverse correlation length, above Tc(γ ) with
[TF − Tc(γ )]/Tc(γ ) 	 1, from equations (17) and (18) and the expression of f L calculated
in appendix A (equations (78) and (85)), one finds

ξ−2
⊥ = M2

0

(
T − Tc(γ )

Tc(γ )

)
(T A3 + 1/g)−1 d = 3 (25)

ξ−2
⊥ |log(ξ−2

⊥ )| = M2
0

T B2

(
T − Tc(γ )

Tc(γ )

)
d = 2 (26)

where A3 and B2 are defined in appendix A. Hence, for the exponent ν defined by
ξ⊥ ∼ (

T −Tc(γ )

Tc(γ )

)−ν
one finds ν = 1/2, with logarithmic corrections for d = 2. At Tc(γ ),

one has ξ−2
⊥ ∼ 1/

√
V in d = 3 and ξ−2

⊥ |log(ξ−2
⊥ )| ∼ 1/V for d = 2. The behaviour of ξ⊥ for

T � Tc(γ ) is shown in figure 1.
For fixed γ, ξ⊥ decreases by increasing the temperature. Indeed this is expected because

coherence is suppressed by thermal fluctuations. The role of γ is more subtle. Naively one
would expect that increasing γ produces a smaller ξ⊥, because coherent islands are washed
away by the flow. However it must also be considered that γ raises the critical temperature
Tc(γ ). Hence, for fixed T, larger values of γ make [T −Tc(γ )]/Tc(γ ) smaller, the system gets
closer to the critical point and the coherence length is increased. This second effect competes
with the former and produces a net increase of ξ⊥ with γ . However, by changing γ and T
in order to maintain a constant distance from criticality, namely keeping [T − Tc(γ )]/Tc(γ )

fixed, the second effect is suppressed and one sees that, indeed, ξ⊥ is reduced by the flow (see
the inset of figure 1). For small [T − Tc(γ )]/Tc(γ ) the power law behaviour (25) is observed.
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Finally, for large temperatures, ξ⊥ becomes γ -independent, because the decoherence produced
by thermal fluctuations prevails over shear effects.

Finally, turning to the phase T < Tc(γ ), the transverse correlation length is given by
ξ−2
⊥ = T/(M2V ) where

M = M0

√
1 − T

Tc(γ )
(27)

is the analogue of the spontaneous magnetization in equilibrium.

4. Dynamical solution

We will solve the model at asymptotic times in the case of quenching processes with initial
conditions given by (5). From now on we will take the infinite volume limit. The formal
solution of equation (11) is given by

C(�k, t) = 
0

y(t)
e−2

∫ t

0 duK2(u) e−k2/�2
+

2T

y(t)

∫ t

0
e−2

∫ t−z

0 duK2(u) e−k2/�2
y(z) dz (28)

where

y(t) = exp

(
2

∫ t

0
[r + gS(t ′)] dt ′

)
(29)

and, from equation (9)

S(t) = lim
V →∞

1

N
〈�ϕ2(�x, t)〉 = lim

V →∞
1

V

∑
�k

C(�k, t) =
∫

ddk

(2π)d
e−k2/�2

C(�k, t). (30)

Then, defining f (t) as

f (t) ≡
∫

ddk

(2π)d
e−2

∫ t

0 [K2(z)] dz−k2/�2
(31)

= (8π)−d/2(t + 1/2�2)−d/22

(
4 − γ 2t4

(t + 1/(2�2)2)
+

4

3

γ 2t3

t + 1/(2�2)

)−1/2

(32)

one has

S(t) = 1

y(t)

(

0f (t) + 2T

∫ t

0
f (t − t ′)y(t ′) dt ′

)
. (33)

We observe that the correction induced by the flow in equation (32) is independent of
the dimensionality of the system and that, in the absence of flow, the expected behaviour
f (t) ≈ (8πt)−d/2 is recovered.

From equations (29) and (33), one obtains the integro-differential equation

dy(t)

dt
= 2y(t)(r + gS(t)) = 2y(t)r + 2g

(

0f (t) + 2T

∫ t

0
f (t − t ′)y(t ′) dt ′

)
(34)

that can be solved introducing Laplace transforms denoted by f L(s) = ∫ ∞
0 f (t) e−st dt and

assuming that yL(s), the Laplace transform of y(t), is well defined, as will be verified a
posteriori.

Equation (34) implies that yL(s) can be expressed in terms of f L(s) through the equation

yL(s) = 1 + 2
0f
L(s)

s − 2r − 4gTf L(s)
. (35)
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The function f L(s) has been calculated in appendix A. Then, from equation (35), inverting
the Laplace transform (see appendix B for details), the function y(t) can be obtained. For
t � τs, y(t) behaves as

1. d = 2

y(t) =




1

2B2T

(
1

2
+

M2
0 
0

2Tc(γ )

)
1

log(2ξ−2
⊥ )

e−2ξ−2
⊥ t T > Tc(γ )

1

2B2Tc

(
1

2
+

M2
0 
0

2Tc(γ )

)
1

log t
T = Tc(γ )

B2

M4

(
T + 
0M

2
0

)
t−2 T < Tc(γ )

(36)

2. d = 3

y(t) =




1

2
e−2ξ−2

⊥ t 1 + M2
0 
0/Tc(γ )

1 + 4Tc(γ )A3
T > Tc(γ )

1

2

1 + M2
0 
0/Tc

1 + 4Tc(γ )A3
T = Tc(γ )

3

4

1√
π

B3

M4

(
T + 
0M

2
0

)
t−5/2 T < Tc(γ )

(37)

where M is given in equation (27), ξ⊥ and Tc(γ ) are given in equations (24)–(26) and the
parameters A3, B2, B3 are defined in appendix A. Equations (36) and (37) hold for t > ξ2

⊥ in
the high temperature phase T > Tc(γ ) and for t � τs when T � Tc(γ ).

5. Autocorrelation function

In this section we analyse the asymptotic behaviour of the autocorrelation function

D(t, t ′) ≡ 〈ϕ(�r, t)ϕ(�r, t ′)〉
=

∫
ddk

(2π)d

∫
ddk′

(2π)d
D(�k, t; �k′

, t ′) e−k2/2�2
e−k′2/2�2

(38)

where the correlator

D(�k, t; �k′
, t ′) = 〈ϕ(�k, t)ϕ(�k′, t ′)〉 (39)

satisfies the equation

∂D(�k, t; �k′
, t ′)

∂t
− γ kx

∂D(�k, t; �k′
, t ′)

∂ky

= −[k2 + gS(t) + r]D(�k, t; �k′
, t ′) (40)

with initial condition D(�k, t ′; �k′
, t ′) = C(�k′

, t ′)δ(�k + �k′
) and t � t ′. The function D(t, t ′) is

calculated in appendix D using equations (36) and (37) for y(t). Here we discuss the results
in the three cases T > Tc(γ ), T = Tc(γ ) and T < Tc(γ ).

1. T > Tc(γ ). In the regime t ′ > ξ2
⊥ equations (116) and (118) show that the correlation

function becomes the time-translation invariant (TTI) quantity

D(t, t ′) � Dst(τ, ξ⊥)

= 4T

(8π)d/2

∫ ∞

τ/2
e−2ξ−2

⊥ y(y + 1/2�2)−d/2 1√
4 + 1

3γ 2y2 + γ 2

2 τ 2
(
1 − τ 2

8y2

) dy (41)
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with τ = t − t ′. This implies that ξ2
⊥ is the characteristic relaxation time of fluctuations above

the critical temperature.

2. T = Tc(γ ). At the critical temperature, due to equations (119) and (121), D(t, t ′) tends,
for t ′ � τs (equation (20)), to the form Dst(τ,∞), namely

D(t, t ′) � Dst(τ,∞) = 4T

(8π)d/2

∫ ∞

τ/2
(y + 1/2�2)−d/2 1√

4 + 1
3 γ 2y2 + γ 2

2 τ 2
(
1 − τ 2

8y2

) dy.

(42)

Then one has TTI again but, for large τ,Dst(τ,∞) decays as a power law Dst(τ,∞) ∝
τ−d/2, implying the absence of a characteristic relaxation time, as usual at criticality. Note
that the shear has the effect of increasing the exponent of the power law decay with respect to
the value −(d − 2)/2 of the undriven case. In other terms, the flow tends to decorrelate faster
the system.

3. T < Tc(γ ). In this case there are two time regimes of interest:

(i) short time separation: t ′ → ∞, τ
t ′ → 0 (quasi-stationary regime)

(ii) large time separation: t ′ → ∞, τ
t ′ → ∞ (aging regime).

In the time sector (i), from equations (125) one has

D(t, t ′) = M2 + Dst(τ,∞) (43)

where Dst(τ,∞) is the same time translational invariant quantity found at T = Tc(γ ),
equation (42).

On the other hand, in the limit (ii), from equation (126), one gets

D(t, t ′) = Dag(t/t ′) = M2

(
t ′

t

) d+2
4

(1 + t ′/t)−
d+2

2
2

d+2
2√

4 2−(1−t ′/t)3

1+t ′/t
− 3 (2−(1−t ′/t)2)2

(1+t ′/t)2

. (44)

Note the dependence of Dag on the ratio t/t ′ alone, as usual in slowly relaxing aging systems.
Furthermore, for t/t ′ � 1, a generalization of the Fisher–Huse exponent λ defined by

D(t, t ′) ∝ (t ′/t)λ (45)

gives

λ = d + 2

4
. (46)

The structure of the autocorrelation function provided in equations (44) and (43) for large
t ′ allows its splitting into the sum of two distinct contributions

D(t, t ′) = Dst(τ,∞) + Dag(t/t ′). (47)

In the regime (i) Dag(t/t ′) remains fixed at its initial value Dag(1) = M2, while Dst(τ,∞)

decays to zero. This makes equation (47) consistent with equation (43). Conversely, in the
regime (ii), Dst(τ,∞) has already decayed to zero and the whole time dependence is carried
by Dag(t/t ′), providing again consistency between equations (47) and (44).

This whole pattern of behaviour of D(t, t ′) is closely reminiscent of what is known
for the system without shear [18]. In that case it was shown that these features reflect an
underlying structure of the order parameter field which, in the late stage of the dynamics of a
quench below Tc, can be decomposed into two statistically independent stochastic components,
ϕ(�x, t) = ψ(�x, t) + σ(�x, t), responsible for the stationary and aging parts of the autocorrelation
function respectively, as discussed in [19]. In the present case, by proceeding along the lines
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of the case γ = 0, it is straightforward to show that the same splitting of the order parameter
field can be explicitly exhibited, which accounts for the structure of D(t, t ′) discussed above;
we refer to [18, 20] for further details. In systems with a scalar order parameter [21] the
physical interpretation of this decomposition is the following: given a configuration at a time
well inside the late stage scaling regime, one can distinguish degrees of freedom ψ(�x, t) in
the bulk of domains from those σ(�x, t) pertaining to the interfaces. The first ones are driven
by thermal fluctuations and behave locally as in equilibrium; the second ones retain memory
of the noisy initial condition, and produce the aging behaviour. For large N, where topological
defects are unstable and domains are not well defined, the recognition of the physical degrees
of freedom associated with ψ(�x, t) and σ(�x, t) is not straightforward as for scalar systems.
Nevertheless, the possibility of also splitting the order parameter in this case indicates that the
same fundamental property is shared by systems with different N.

The overall behaviour of the autocorrelation function is shown in figure 2, for different t ′.
This figure also shows a comparison with the case γ = 0. The pattern is qualitatively similar in
both cases: initially a fast decay to a plateau value is observed. This is due to the vanishing of
Dst(τ,∞) in the quasi-stationary regime while Dag(t/t ′) remains constant, Dag(t/t ′) � M2

(this value corresponds to the height of the plateau in the figure). Note that curves with
different t ′ collapse in this regime, due to the stationarity of Dst(τ,∞). For longer times,
when t − t ′ ∼ t ′, the autocorrelation function departs from the plateau value, because also
Dag(t/t ′) starts to fall off, and a pronounced dependence on the waiting time t ′, or aging,
is observed. After the stationary regime is over (around τ ∼ 10) γ also plays an important
role. Actually one observes that the decay of Dag(t/t ′) is promoted by the shear, as expected
because correlations are washed out by the flow. Indeed, considering the case with t ′ = 105,
for example, D(t, t ′) decays from one to the value 10−3 in a time τ of order 109 for γ = 0
and in a time of order 3 × 107 for γ = 0.1. For long times this effect results in the larger
Fisher–Huse exponent (46) with respect to the undriven case, where λ = d/4 [12].

6. Linear response

In order to calculate the response of the field to an external perturbation �h(�x, t) we add to the
original Hamiltonian the term δH = − ∫

dxd �h(�x, t) · �ϕ(�x, t). The Langevin equation (1) for
a generic component becomes

∂ϕα(�x, t)

∂t
+ �∇ · (ϕα(�x, t)�v) = − δH[�ϕ]

δϕα(�x, t)
+ hα(�x, t) + ηα(�x, t). (48)

The two-time response function is defined as

R(�k, t; �k′
, t ′) = (2π)d

δ〈ϕα(�k, t)〉
δhα(−�k′

, t ′)

∣∣∣∣∣
{h(�k′

,t ′)=0}
(49)

with t � t ′. Here, due to rotational symmetry, a generic component of the order parameter
can be considered and vectorial indices can be dropped. Using the properties 〈ϕα(�k, 0)〉 = 0
and 〈ηα(�k, t)〉 = 0 we get

R(�k, t; �k′
, t ′) = (2π)dδ( �K(t − t ′) + �k′

)

√
y(t ′)
y(t)

e− ∫ t−t ′
0 duK2(u) (50)

where the function y(t) is defined in equation (29).
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Figure 2. Autocorrelation function versus τ for different waiting times t ′, with T = Tc(γ )/2,

d = 3,� = 1, −r = g = 1. The upper figure refers to the case without shear, the lower one to the
case with γ = 0.1. Times are measured in units of �−1, shear rates in units of �.

The autoresponse function can also be introduced as

R(t, t ′) ≡ δ〈ϕ(�r, t)〉
δh(�r, t ′)

∣∣∣∣
h=0

=
∫

ddk

(2π)d

∫
ddk′

(2π)d
R(�k, t; �k′

, t ′) e−k2/2�2
e−k′2/2�2
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=
√

y(t ′)
y(t)

∫
ddk

(2π)d
e− ∫ t−t ′

0 duK2(u) e−(k2+ d(γ )

2 )/�2

= 21−d/2

(4π)d/2

√
y(t ′)
y(t)

(
t − t ′

2
+ τM

)−d/2 1√
4 + 4

3γ 2 (t−t ′)3

t−t ′+2τM
− γ 2 (t−t ′)4

(t−t ′+2τM)2

(51)

where d(γ ) = K2(t − t ′) − k2.
Real experiments and numerical simulations usually consider the integrated response

function, namely the response to a constant perturbation switched on at time tw and acting
until the time t. For instance, in spin systems perturbed by a magnetic field, χ corresponds to
the so-called zero-field cooled magnetization [22]. For this quantity one obtains

χ(t, tw) ≡
∫ t

tw

R(t, t ′) dt ′ = 21−d/2

(4π)d/2

1√
y(t)

∫ τ

0
dz

√
y(t − z)

(
z
2 + τM

)−d/2√
4 + 1

3γ 2z2
(52)

where we have introduced the variables z = t − t ′, τ = t − tw and neglected the
two asymptotically irrelevant terms containing τM in the square root in the last line of
equation (51). We will evaluate this function in the asymptotic regime tw → ∞ using
the large time behaviour of y(t) given in equations (36) and (37).

1. T > Tc(γ ). Inserting equations (36) and (37) in equation (52), the response function reads

χ(t, tw) = χst(τ, ξ⊥) = 2

(4π)d/2

∫ τ

0
dz e−2ξ−2

⊥ z/2 (z + 2τM)−d/2√
4 + 1

3γ 2z2
(53)

which is a time translational invariant quantity, as expected, because the system reaches a
stationary state.

2. T = Tc(γ ). For tw � τs one has

χ(t, tw) = χst(τ,∞) = 2

(4π)d/2

∫ τ

0
dz

(z + 2τM)−d/2√
4 + 1

3γ 2z2
(54)

showing that also at criticality the response function is time translational invariant.
After an integration by parts, the function χst(τ,∞) can be expressed in d = 3 in terms

of the 2F1 hypergeometric function as

χst(τ,∞) = 1

(2π)3/2
[�(1/2 + (�2τ + 1)−1/2(4 + 1/3γ 2τ 2)−1/2)]

− γ 2

9
τ 3/2

2F1[1/2, 3/4, 7/4,−γ 2τ 2/12] (55)

while in d = 2, one gets

χst(τ,∞) = 1/(2π)√
1 + 1/(3A2)

[
log(�2τ + 1) + log

(
1 +

√
1 + 1/(3A2)

)
− log

(
1 +

√
1 + 1/(3A2)

√
1 + 1/3(γ τ/2)2 − γ τ/(6A)

)]
. (56)

In particular, for τ 	 τs , one has the limiting behaviour

χst(τ,∞) =




1

2π
log(�2τ + 1) d = 2

M2
0

Tc(γ )

(
1 − 1√

�2τ + 1

)
d = 3

(57)
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while

χst(τ,∞) = M2
0

Tc(2γ )
(58)

in the opposite limit τ � τs .

3. T < Tc(γ ). For T < Tc(γ ) the integrated response function is given by

χ(t, tw) = 2

(4π)d/2

∫ τ

0
du

(u + 1/(�2))−d/2√
4 + γ 2u2/3

(1 − u/t)−(d+2)/4. (59)

The term (1 − u/t)−(d+2)/4 can be expanded in powers of u/t and integrated term by term. It
can be shown that the first contribution is dominant for tw � τs and behaves as χst(τ,∞) in
equation (54). Then in the limit tw � τs the response function becomes TTI also in the low
temperature phase.

It is interesting to study the behaviour of the first correction to this result, namely the next
term appearing in the power series in u/t discussed above. The dependence on the two times
of this quantity, which will be denoted as χag(t, tw), can be factorized as χag(t, tw) = t−1b(τ).
Here b(τ) is a TTI function that, starting from zero at τ = 0, saturates to a constant value for
τ > τs . In the regime τ > τs , therefore, one has χag(t, tw) ∼ t−1. In conclusion, taking into
account also this first correction, it results that χ(t, tw) � χst(τ,∞) + χag(t, tw) and, recalling
the behaviour of χag(t, tw), one concludes that for large t the second term is always negligible
with respect to the first, as anticipated after equation (59).

A similar structure, with a stationary and an aging part, is also found in the case with
γ = 0. However, in that case, one finds a similar result, namely χag(t, tw) = t−1b(τ) and the
properties of b(τ) discussed above, only above the upper critical dimension dU = 4. Instead,
below dU , χag(t, tw) = t−a

w B(t/tw), for τ/tw > 1, with a = (d − 2)/2. Note that this form
implies that χag(t, tw) does not vanish for large t at the lower critical dimension d = 2. A
similar pattern is also found for scalar systems [21].

When shear is applied the system behaves as in the case with γ = 0 and d � dU . This
is due to the fact that the mathematical structure of the solution of the model with applied
flow in dimension d is similar to the structure of the solution without shear in an increased
dimensionality d + 2. This can be checked, for instance, from the behaviour of the function
y(t) of equations (36) and (37) as compared to the form without shear [18]. This phenomenon
raises the effective dimensionality at or above dU = 4 for the cases d = 2, 3 considered in this
paper.

7. Fluctuation–dissipation relation

In this section we will discuss the out of equilibrium generalization of the FDT, namely the
relation between D(t, tw) and χ(t, tw) in the large tw regime.

1. T > Tc(γ ). Let us first recall that in the case without shear, for times tw larger than the
equilibration time, R(t, tw), D(t, tw) and χ(t, tw) become TTI quantities R(τ), D(τ) and
χ(τ). Moreover, the equilibrium FDT holds, namely

T R(τ) = −dD(τ)

dτ
(60)

which implies

T χ(τ) = D(τ = 0) − D(τ). (61)
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Figure 3. T χ(τ ) is plotted against D(τ) for a quench to a final temperature T = (21/20)Tc(γ ),
with tw = 105, d = 3, � = 1, g = −r = 1. Solid lines correspond to γ = 10−2, 10−1, 1, from
top to bottom. The dashed line, which is almost indistinguishable from the case γ = 10−2, is the
equilibrium behaviour γ = 0. The inset shows the fluctuation–dissipation ratio X(D) defined in
equation (63). Times are measured in units of �−1, shear rates in units of �.

Note that equation (60) is equivalent to T Rim(ω) = ωDre(ω), the usual relation between
the dissipative part of the response and the spectral density [23]. Here Rim(ω) and Dre(ω) are
the imaginary and real parts of the Fourier transform of R(τ) and D(τ).

The effect of the shear flow is to transfer energy to the system, and, also in the quench to a
temperature above the critical point where TTI is obeyed, the equilibrium Gibbs state is never
reached. Then the FDT does not hold and D(t, tw) and χ(t, tw) do not satisfy an equation
analogous to equation (61). The fact that D(t, tw) = Dst(τ, ξ⊥) and χ(t, tw) = χst(τ, ξ⊥) are
TTI quantities implies that the dependence on the two times of χ(t, tw) can still be accounted
for through D(t, tw), yielding a non-trivial relation χ̃(D) between χ(t, tw) and D(t, tw). The
fluctuation–dissipation plot, namely the relation χ̃(D), is shown in figure 3.

The plot follows the straight line (61) for small values of τ , when τ 	 τs . Recalling
the discussion of section 2 regarding local equilibrium one has that the system behaves as in
equilibrium up to timescales of the order of the evolution time of the system which, in this
case, is the flow timescale τs .

For larger values of τ (smaller D) χ̃(D) deviates from the equilibrium form (61) due
to the effects of shear. In particular, for T � Tc(γ ) its asymptotic (τ = ∞) value is
T χ̃(τ, ξ⊥) ≈ M2

0 T/Tc(2γ ) (equation (58)) which is less than M2
0 − M2 = M2

0 T/Tc(γ ), the
value obtained from equation (61). From equation (58) it is readily seen that the relation
between the response χ(t, tw; 2γ ) of a system subjected to a shear flow with rate 2γ , and the
autocorrelation function D(t, tw; γ ) of another system with shear rate γ , obeys equation (61)
at large time (γ τ � 1), namely

T χst(τ, ξ⊥; 2γ ) = Dst(0, ξ⊥; γ ) − Dst(τ, ξ⊥; γ ). (62)

This symmetry of the theory is independent of the model parameters and is therefore
particularly suited for comparison with other models and for experimental checks. Actually,
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the linearization of the equation of motion provided by the large-N model is expected to provide
reliable results above the critical temperature and we expect relation (62) to be observed also
in more realistic systems.

2. T = Tc(γ ). At T = Tc(γ ) the fluctuation–dissipation plot is the same as for T � Tc(γ ).
In the following we will focus on the fluctuation–dissipation ratio:

X(t, t ′) = T
R(t, t ′)

∂D(t, t ′)/∂t ′
. (63)

and, in particular, on its limiting value

X∞ = lim
t ′→∞

lim
t→∞ X(t, t ′). (64)

In systems without drive this quantity takes the value X∞ = 1 for equilibrium systems while
X∞ = 0 in the low temperature phase of coarsening systems with a non-vanishing critical
temperature [18, 21, 24]. For critical systems the value of X∞ has been computed for the
random walk and the Gaussian model where the non-trivial value X∞ = 1/2 is found [25].
This quantity has also been computed for some coarsening systems at the lower critical
dimension dL, such as the X–Y model in d = 2 [25] and the Ising chain [26], where the
same result X∞ = 1/2 is recovered. However, concerning systems quenched to the critical
temperature above dL, the value of X∞ turns out to possess a different value. Numerical
simulations of the Ising model with heat bath dynamics in d = 2 indicate that X∞ ∼ 0.26 [27]
and the exact solution [27] of the spherical model (which is equivalent to the large-N model)
gives

X∞ = d − 2

4
2 < d < 4 (65)

X∞ = 1

2
d > 4. (66)

In [27] it is proposed that this quantity is a novel universal quantity of non-equilibrium critical
dynamics.

Under the action of a shear flow, equations (66) is obeyed for both d = 2 and d = 3,
as we show below. Indeed, concentrating on the case d = 3 for clarity, taking R(t, t ′) from
equation (51) (with y(t) = const) in the asymptotic limit t − t ′ � t ′ and evaluating ∂D/∂t ′

from equation (42), one obtains

X∞ = 1
2 . (67)

It can be shown that the same result X∞ = 1/2 applies also in the case d = 2. Then, with
respect to the case γ = 0 where equations (65) and (66) hold, the effect of the flow is to shift
by two the effective dimensionality of the system, as already discussed in the previous section.

3. T < Tc(γ ). Summarizing the results of the previous sections, in the regime tw � τs , one
has

D(t, tw) = Dst(τ,∞) + Dag(t/tw) (68)

χ(t, tw) = χst(τ,∞). (69)

Before discussing the behaviour of the flowing system it is useful to overview the behaviour
without shear that is plotted in figure 4. In this case a structure such as (68) and (69) is also
found.

In the short time separation regime (see section 5), or stationary regime, Dst(τ,∞)

decays from Dst(0,∞) = M2
0 −M2 to Dst(τ � tw,∞) � 0 while Dag(t/tw) � Dag(1) = M2

remains constant. Therefore, in this regime D(t, tw) ranges from M2
0 down to M2. T χst(τ,∞)
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Figure 4. T χ(t, tw) is plotted against D(t, tw) for a quench to a final temperature T = Tc(γ )/2,
with tw = 105, d = 3, � = 1,−r = g = 1. Solid lines correspond to γ = 10−2, 10−1, 1, from
top to bottom. The dashed line is the case with γ = 0. Times are measured in units of �−1, shear
rates in units of �.

increases from zero to T χst(τ � tw,∞) � M2
0 − M2 and is related to Dst(τ,∞) by the

equilibrium FDT, equation (61). This gives rise to the straight line with negative slope on the
right of figure 4. Note that this line is nothing other than the fluctuation–dissipation plot of a
system in the equilibrium state above Tc, shifted by the amount M2 along the horizontal axis.

In the large time separation sector, or aging regime, Dst(τ,∞) � 0 whereas Dag(t/tw)

decays from Dag(1) = M2 to zero for large t/tw . Hence the aging regime corresponds to
the region 0 � D(t, tw) � M2 of the fluctuation–dissipation plot (figure 4). The response
function stays constant T χ(t, tw) = M2

0 − M2 because the aging part of this quantity is
negligible for large tw . This behaviour accounts for the flat part on the left side of figure 4.
Given this structure it is also clear that the whole time dependence of the response can be
absorbed through D(t, tw), namely χ(t, tw) = χ̃(D), as proposed in [2].

Next we turn to the case with shear. In this situation, given equations (68) and (69)
and the behaviour of Dst(τ,∞),Dag(t/tw) and χst(τ,∞) obtained in sections 5 and 6
(equations (42), (44) and (54)), most of the considerations discussed for γ = 0 still apply. In
particular, in the short time separation regime Dst(τ,∞) decays from Dst(0,∞) = M2

0 − M2

to zero while Dag(t/tw) � M2 stays constant. In this regime D(t, tw) ranges from M2
0 down

to M2 and T χst(τ,∞) increases from zero to its limiting value T χst(τ � tw,∞). However,
when shear is applied, the relation between χst(τ,∞) and Dst(τ,∞) is not the equilibrium
FDT (61) but, instead, the relation χ̃(D) of the case T � Tc(γ ) discussed above (shifted by the
amount M2 along the D-axes, as for γ = 0). Therefore, as discussed already for T � Tc(γ )

in the stationary regime, one has both a region τ < τs where standard FDT (61) holds (on the
right of figure 4), and a time domain τs < τ < tw where the relation χ̃(D) deviates from the
linear behaviour (61). Finally, for τ > tw (namely D < M2(γ )), the aging regime is explored
with a flat fluctuation–dissipation plot.

The pattern of violation of the FDT discussed so far for coarsening under shear flow can be
compared with the behaviour of driven mean field models for glassy kinetics [3]. In both cases
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the system without drive exhibits a phase transition at a critical temperature Tc characterized
by an aging dynamics below Tc, and a qualitatively similar behaviour of the autocorrelation
function. However, several differences occur between these systems when the drive is switched
on, some of which are revealed by the fluctuation–dissipation relation. The most important
difference is due to the fact that mean field glass models always attain asymptotically a
stationary state, regardless of the temperature, while, as discussed in sections 3 and 5, the
model considered in this paper exhibits an aging kinetics below a critical temperature even
in the presence of shear. Furthermore, in glassy models, the fluctuation–dissipation relation
χ(D) is a broken line for every temperature and the two slopes of these lines are associated
with the existence of two well defined temperatures in the system, the bath temperature T and
the effective temperature Teff of the slow degrees of freedom. A similar behaviour is found in
molecular dynamics simulations of binary Lennard-Jones mixture under shear flow [28]. On
the other hand, at least in the stationary state observed above Tc(γ ), the only one that can be
compared with the time translational invariant states of the glassy case, the model considered
here shows a more complex relation χ(D), as can be clearly observed in the inset of figure 4.
This suggests that, despite some qualitative similarities, coarsening systems under the action
of an external drive behave quite differently from glassy systems and that the violation of the
FDT is an efficient tool to detect it.

8. Conclusions

In this paper we have studied analytically the out of equilibrium kinetics of a solvable model
for phase ordering systems subjected to a uniform shear flow. Besides the relevance of this
subject as a first step for a better comprehension of sheared two-component fluids, which
has recently been by itself a matter of intense theoretical and experimental interest, this
model is particularly suited for investigating off-equilibrium systems under a general and wide
perspective. Actually, the properties of non-equilibrium states are an important concern of
modern statistical mechanics and many efforts have been devoted to widen our knowledge in
this field. In particular, much interest has been paid to aging systems, namely systems which
retain memory of the time tw elapsed since they have been brought out of equilibrium, such as
glasses or spin glasses. The aging properties are usually extracted from the behaviour of the
autocorrelation function D(t, tw) which carries an explicit dependence on both times, up to the
longest observation scales. On the other hand, the so-called driven systems, to which external
energy is pumped from the outside, generally lose memory of the initial condition and, after a
microscopic time, a time translational invariant state is entered, which, because of the external
drive, is not an equilibrium one, in the Gibbs sense. It has been argued that an important piece
of information on non-equilibrium states, both aging and stationary, is encoded into the linear
response function to an external perturbation,and, in particular, in the so-called off-equilibrium
generalization of the FDT, the relation between the response function and D(t, tw). Hopefully,
this non-equilibrium linear response theory should bear the amount of relevant implications
and the generality of the equilibrium case. However, nowadays, our understanding of this
important issue is still incomplete and further investigations are necessary in order to deepen
our insight.

The model we have studied in this paper is particularly suited for this analysis because it
offers both a framework where exact calculations can be carried over and a rich phenomenology
due to the presence of both stationary and aging off-equilibrium states. These two kinds of
behaviour are separated by a phase transition at a critical temperature Tc(γ ) which increases
with γ and gives a transition also in d = 2. We stress that this is a transition between non-
equilibrium states. Nevertheless, in this model the existence of a non-equilibrium parameter
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γ allows one to compare the properties of the transition with the well known equilibrium case
with γ = 0. In doing that, one discovers that a wealth of similarities exist greatly helping
the analysis of what goes on out of equilibrium. In particular, in the low temperature phase,
where the aging behaviour coexists with the drive, the autocorrelation function can be split
into a stationary and an aging part, along the same lines as for γ = 0. The former describes
the correlation between fast degrees of freedom while the latter, which decays as a power
law with a generalized Fisher–Huse exponent, is due to the slow variables responsible for the
aging properties. This analysis allows a better comprehension of the violation of the FDT and
the recognition that a mechanism very similar to that observed without shear is at work. This
provides the basis for understanding why the fluctuation–dissipation plot of figure 4, with the
flat part characteristic of coarsening systems, comes about also in sheared systems.

In aging systems without drive a definite progress in generalizing the FDT out of
equilibrium has been achieved by realizing that certain fundamental properties of the system
are encoded into the fluctuation–dissipation relation. A first step in this direction was made by
interpreting Teff = T X−1(C) as an effective temperature of the system, different from that of
the thermal bath. Furthermore, it was also shown by Franz et al [29] that the relation between
response and autocorrelation function bears information on the properties of the equilibrium
state towards which the system is evolving. These advances qualify the fluctuation–dissipation
relation as a fundamental one also far from equilibrium, providing an important tool in this
difficult field. However, a generalization of these concepts to off-equilibrium driven systems
is lacking, particularly for the low temperature phase of the model considered here, where
aging coexists with the drive. Further studies are therefore needed to discover if and which
properties of the non-equilibrium state are encrypted into their fluctuation–dissipation relation.
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Appendix A. The Laplace transform of f (t)

In this appendix we compute the Laplace transform of f (t) defined as

f L(s) =
∫ ∞

0
e−tsf (t) dt (70)

where f (t) is given in equation (32). In doing so we will also obtain an explicit form for the
quantity P(x) defined in equation (18) due to the relation

P(x) = 2f L(2x). (71)

This relation can be easily derived by inserting expression (31) into equation (70) and
comparing the result with definition (18).

1. d = 2. We first calculate the Laplace transform of the function f (t) of equation (31) in
d = 2. It can be written as

f L(s) =
∫ ∞

0
e−tsf (t) dt = A

4π

∫ ∞

0

e− s
γ
y

1 + Ay

(
4 − y4A2

(1 + Ay)2
+

4

3

y3A

(1 + Ay)

)− 1
2

dy

= e
s

γ A

4π

∫ ∞

s
γ A

dz
e−z

z

(
4 − (zγA/s − 1)4s2

A4γ 2z2
+

4

3

(zγA/s − 1)3s

A3γ z

)− 1
2

(72)



Correlation functions and fluctuation–dissipation relation in driven phase ordering systems 4747

where the variable z = s(1 + Ay)/(γA) is introduced and A is defined in equation (21). The
last integral can be split into two parts: the first is given by

e
s

γ A

8π

∫ √
12s/γ

s
γ A

dz
e−z

z

1√
1 + h(z)

(73)

where the function

h(z) = (zγA/s − 1)3s2

A4γ 2z2

(
zγA

12s
+

1

4

)
(74)

can be shown to be less than one in the integration interval. Then the square root of
equation (73) can be expanded as a power series and integrated term by term. The result
is∫ √

12s

s
γ A

dz
e−z

z

1√
1 + h(z)

= ln(
√

12A) +
∞∑

n=1

rn

2n
−

√
12

s

γ

∞∑
n=0

rn

2n + 1
+ O(s2, A−1) (75)

with rn = (−1)n(2n − 1)!!/(2n)!!. The other contribution to f L(s), neglecting all terms of
order O(s2, A−1), is given by

e
s

γ A

8π

∫ ∞
√

12s
γ

dz
e−z

z

1√
1 + z2γ 2

12s2

. (76)

Proceeding along the same lines as for the previous integral (73) and adding the result to
expression (75) one finds

f L(s) = 1

8π

(
ln(

√
12A) + 1 + D0 +

√
12D1

s

γ
+

∞∑
n=0

12n+1/2s2n+1

γ 2n+1

(
2n∏

k=0

1

k + 1

)
ln

√
12s

γ

)

+O(s2, A−1) (77)

where D0 = ∑∞
n=1 rn

(4n+1)

2n(2n+1)
= ln 2 − 1 ≈ −0.3068,D1 = C − 2 − D0 ≈ −1.7296 with

C ≈ 0.577 216 being Euler’s constant. Equation (77) can be written more compactly as

f L(s) ≈ M2
0

2Tc(γ )
− A2s + B2s log s (78)

where only the first term in the series of equation (77) is retained and

f L(0) = M2
0

2Tc(γ )
= 1

8π

(
ln(

√
12A) + ln 2

)
(79)

A2 = −
√

12

8π
γ −1

(
D1 − ln(

√
12/γ )

)
B2 =

√
12

8π
γ −1. (80)

2. d = 3. Similar to the case d = 2, starting from equation (32), f L(s) can be written as

f L
3 (s) =

√
γA3/2

4(2π)3/2

∫ ∞

0

e− s
γ
y

(1 + Ay)3/2

(
4 − y4A2

(1 + Ay)2
+

4

3

y3A

(1 + Ay)

)− 1
2

dy

= e
s

γ A

4(2π)3/2

√
s

∫ ∞

s
γ A

dz
e−z

z3/2

(
4 − (zγA/s − 1)4s2

A4γ 2z2
+

4

3

(zγA/s − 1)3s

A3γ z

)− 1
2

. (81)
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The last expression can again be calculated by splitting the integration interval. A first
contribution comes from the term
√

s

2

∫ √
12s/γ

s
γ A

dz
e−z

z3/2

1√
1 + h(z)

=
√

Aγ +
√

γ

2(12)1/4

∞∑
n=0

rn

2n − 1/2

− 121/4

2

s√
γ

∞∑
n=0

rn

2n + 1/2
+ O(s2, A−1/2). (82)

Adding this contribution to the other term
√

s

2

∫ ∞
√

12s
γ

dz
e−z

z3/2

1√
1 + z2γ 2

12s2

=
√

γ

2(12)1/4

∞∑
n=0

rn

2n + 3/2
− 121/4 s

2
√

γ

∞∑
n=0

rn

2n + 1/2

+
�(1/2)

2

∞∑
n=0

(
2n+1∏
k=0

2

2k + 1

)
s2n+3/2 12n+1/2

γ 2n+1
+ O(s2, A−1/2) (83)

one obtains

f L(s) = 1

4(2π)3/2

[√
γA +

√
γ

121/4
T0 − 121/4 s√

γ
T1

+
�(1/2)

2

∞∑
n=0

(
2n+1∏
k=0

2

2k + 1

)
s2n+3/2 12n+1/2

γ 2n+1

]
+ O(s2, A−1/2) (84)

where T0 = ∑∞
n=0 rn

2n+1/2
(2n+3/2)(2n−1/2)

≈ −0.847, T1 = ∑∞
n=0 rn

1
2n+1/2 ≈ 1.8541. The

behaviour for small s is only relevant for the asymptotic dynamics, as discussed below
equation (94). This is given by

f L(s) ≈ M2
0

2Tc(γ )
− A3s + B3s

3/2 (85)

with

f L(0) = M2
0

2Tc(γ )
= 1

4(2π)3/2

(√
γA +

√
γ

121/4
T0

)
(86)

A3 = 121/4

4(2π)3/2

T1√
γ

B3 =
√

π12

6(2π)3/2
γ −1. (87)

It can be shown that the coefficients T0, T1 can also be written in terms of the �-function as
T0 = −�2(3/4)√

π
, T1 = �2(1/4)

4
√

π
.

Appendix B. The function y(t)

We want to computey(t), the inverse Laplace transformation of yL(s) of equation (35), defined
by

y(t) = 1

2π i

∫ σ+i∞

σ−i∞
ds yL(s) est (88)

where σ has to be chosen in such a way that all the poles of yL(s) are on the left of the path
of integration.
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Re(s)

Im(s)

ε

Figure 5. The closed contour adopted to compute the integral (88).

We first study the pole structure of yL(s) in the half-plane x > 0 with s = x + iy. The
real part R(x, y) of the denominator of yL(s) is given by

R(x, y) = x − 2r − 4T Re(f L(x, y)) (89)

where

Re(f L(x, y)) =
∫ ∞

0
dt f (t) e−xt cos(yt). (90)

Given that f (t) � 0 for any time (see equation (32)), for non-negative values of x,

Re(f L(x, y)) is a monotone decreasing function of both x and y. This implies, from equation
(89), that R(x, y) is a monotone increasing function in the half-plane considered. As a
consequence, R(x, y) remains positive for all x � 0 if R(0, 0) > 0. Since from the definition
of Tc(γ ) given in equation (23) one has

R(0, 0) > 0 T < Tc(γ ) (91)

R(0, 0) = 0 T = Tc(γ ) (92)

R(0, 0) < 0 T > Tc(γ ) (93)

for T � Tc(γ ), R(x, y) is always positive for x > 0 and yL(s) has no poles in the complex
positive half-plane. In particular, at T = Tc(γ ) there is a pole at the origin. On the other hand,
for T > Tc(γ ), the monotonic behaviour of R(x, y) and equation (93) imply the existence of
a positive p such that R(x, y) > R(p, 0) = 0 for any x > p. Since the imaginary part of the
denominator of yL(s) is zero everywhere on the real axis, one can conclude that the largest
pole is located on the real axis at p and, in the Bromwich contour (the vertical integration path
of figure 5), σ > p.
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We can now calculate explicitly the integral of equation (88) in the different temperature
regimes.

1. T < Tc(γ ). In this case there are no poles in the positive complex plane and the Bromwich
contour can coincide with the imaginary axis. The theorem of residues can be applied choosing
a closed contour in the negative complex half-plane. Due to the non-analytical part of f L(s),
there is a branch cut in the complex plane along the negative real axis. Then we choose the
contour � of figure 5 and the only non-vanishing contributions come from the Bromwich
contour itself and from the integral along both sides of the branch cut. Then, one has∫

�

ds yL(s) est = 2iπy(t) +
∫ ∞

0
dx e−xt (yL(s)|s=xeiπ − yL(s)|s=xe−iπ ). (94)

Since we are interested in the large time behaviour of y(t), we can compute the above integrals
taking only the small s behaviour of f L(s) given in equations (78) and (85). We obtain∫

�

ds yL(s) est = 2iπy(t) − 2π i
B2

M4

(
T + 
0M

2
0

)
t−2 d = 2 (95)

∫
�

ds yL(s) est = 2iπy(t) − 2
√

π i
3

4

B3

M4

(
T + 
0M

2
0

)
t−5/2 d = 3. (96)

The above expressions are equal to the sum of the residues of all eventual poles inside �. In
the negative complex plane these poles can only give contributions exponentially decreasing
with time which are asymptotically negligible with respect to the power law behaviour of
equations (95) and (96). Henceforth we obtain expressions (36) and (37) in d = 2 and d = 3,
respectively.

2. T = Tc(γ ). The same contour � of the T < Tc(γ ) case can be chosen since the pole
located at the origin is outside �. The evaluation of the integrals proceeds differently in d = 2
and d = 3. In d = 2 the computation strictly follows the one presented for T < Tc(γ ). The
non-vanishing contributions on � still come from the Bromwich contour and the integrals
around the cut. One obtains∫

�

ds yL(s) est = 2iπy(t) − 2π i
1

2B2Tc(γ )

(
1

2
+


0M
2
0

2Tc(γ )

)
1

log t
(97)

which gives, finally, the result of equation (36). In d = 3 the contribution coming from the
small half-circle around the origin gives a constant term. Since, as before, the integral along
both sides of the cut has a decreasing power law behaviour, asymptotically, the contribution
from the half-circle around the origin is the dominant one and∫

�

ds yL(s) est = 2iπy(t) − π i
1 + M2

0 
0/Tc(γ )

1 + 4Tc(γ )A3
(98)

resulting in equation (37).

3. T � Tc(γ ). In the case of a temperature T = Tc(γ ) + δT with δT /Tc(γ ) 	 1 the
preliminary discussion about R(x, y) assures the presence of a pole on the positive real axis
close to the origin. The location (p, 0) of this pole is given by the solution of the equation

R(p, 0) = 0 (99)

that, for p 	 1, as δT /Tc(γ ) 	 1 implies, reads

p log(p) = M2
0 δT /(Tc(γ )2B2T ) d = 2 (100)

p(1/2 + 2T A3) = M2
0 δT /Tc(γ ) d = 3. (101)

At this point a similar procedure as in the case T = Tc(γ ) can be followed giving the
asymptotic behaviour for y(t) of equations (36) and (37) in d = 2 and d = 3, respectively.
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Appendix C. Asymptotic behaviour of the zero mode of C(�k, t) for T < Tc(γ)

The value C(�k = 0, t0) can be obtained from equation (28) and reads

C(�k = 0, t0) = 
0

y(t0)
+

2T

y(t0)

∫ t0

0
y(z) dz. (102)

The integral appearing in the above equation can be split into two terms:∫ t0

0
y(z) dz =

∫ ∞

0
y(z) dz −

∫ ∞

t0

y(z) dz. (103)

From equation (35) one has∫ ∞

0
y(z) dz = yL(0) = 1

2M2
+

M2
0

M2


0

2Tc(γ )
(104)

where we have used equations (79) and (86), while the asymptotic behaviour of y(t)

(equations (36) and (37)) gives∫ ∞

t0

y(z) dz = 1

(8π)d/2

√
12

γ

T + 
0M
2
0

M4

2

d
t
−d/2
0 . (105)

Putting together equations (102), (104) and (105) one finally obtains

C(�k = 0, t0) = 1

y(t0)

(
M2 − 4T

(8π)d/2

√
12

dγ
t
−d/2
0

)
T + 
0M

2
0

M4
. (106)

Note that the dependence on the initial condition, namely the parameter 
0, drops out for
t � τs in equation (106), by virtue of expressions (36) and (37) of y(t0), because the scaling
regime is entered and the memory of the intial state is lost.

Appendix D. The autocorrelation function

The evolution equation (40) for the autocorrelation function D(t, t ′) can be integrated starting
from a generic time t0 chosen arbitrarily between the time of the quench (t = 0) and the
observation time t. The formal solution for D(t, t ′) then reads

D(t, t ′) = DT (t, t ′) + D0(t, t
′) (107)

where

DT (t, t ′) = 2T√
y(t ′)y(t)

∫
ddk

(2π)d
e−(k2+d(γ )/2)/�2

∫ t ′

t0

dz e−2
∫ t−z

0 K2(u) du e
∫ t−t ′

0 K2(u) duy(z)

(108)

and

D0(t, t
′) = y(t0)√

y(t ′)y(t)

∫
ddk

(2π)d
C (K(t − t0), t0) e−(k2+d(γ )/2)/�2

e−2
∫ t−t0

0 K2(u) du e
∫ τ

0 K2(u) du

(109)

with d(γ ) = K2(t − t ′) − k2.
We will take the time t0 large enough (t0 � τs) that y(t) is given by equations (36) and

(37). Furthermore, it can be shown that, due to the condition (21), the function d(γ ) can be
neglected in equations (109) and (108).
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We will first consider the function DT (t, t ′). Carrying out the integral one obtains

DT (t, t ′) = 4T

(8π)d/2
√

y(t)y(t ′)

×
∫ t ′

t0

y(z)(tm − z + τM)−d/2 1√
4 − γ 2 ((t−z)2−τ 2/2)2

(tm−z+τM )2 + 4
3γ 2 ((t−z)3−τ 3/2)

(tm−z+τM )

dz (110)

with τ = t − t ′ and tm = (t + t ′)/2. The role of the cut-off � is crucial in the factor
(tm − z+ τM)−d/2 in order to avoid divergences at z = tm; however, for large tm > τs , one finds
that it can be neglected in the two terms under the square root. Then, introducing the variable
u = 1 − z/tm, one has

DT (t, t ′) = 4T

(8π)d/2

t
−d/2
m

γ

∫ 1−t0/tm

τ/(2tm)

ρ(u, τ, tm)�(u, τ, tm) du (111)

where

ρ(u, τ, tm) = (u + 1/(2�2tm))−d/2√
4

γ 2t2
m

+ 1
3u2 + 1

2

(
τ
tm

)2(
1 − (τ/tm)2

8u2

) (112)

and

�(u, τ, tm) =




e−2ξ−2
⊥ tmu for T > Tc(γ )

1 for T = Tc(γ ) d = 3√
log(tm + τ/2) log(tm − τ/2)

log[tm(1 − u)]
for T = Tc(γ ) d = 2

(
1 − u√

1 − (τ/2tm)2

)− d+2
2

for T < Tc(γ ).

(113)

Turning now to the function D0(t, t
′), in the limit t ′/t0 � 1, due to the presence of

the exponential factors in equation (109), D0(t, t
′) can be evaluated by approximating the

one-time correlation function C (K(t − t0), t0) at the time t0 entering equation (108), whose
expression is given in equation (28), with its value at �k = 0. Then one has

D0(t, t
′) = C(�k = 0, t0)y(t0)√

y(t)y(t ′)
(t − τ/2 + 1/2�2)−d/2

× 2√
4 − γ 2 (t2−τ 2/2)2

(t−τ/2+1/(2�2))2 + 4
3γ 2 (t3−τ 3/2)

(t−τ/2+1/2�2)

. (114)

From now on one must distinguish different temperature ranges.

1. T > Tc(γ ). Starting with DT (t, t ′), from equations (111)–(113), one has

DT (t, t ′) = 4T

(8π)d/2

∫ tm−t0

τ/2
e−2ξ−2

⊥ y(y + 1/2�2)−d/2 1√
4 + 1

3γ 2y2 + γ 2

2 τ 2
(
1 − τ 2

8y2

) dy. (115)

In the limit tm → ∞,DT (tm, τ ) becomes a TTI quantity

Dst(τ, ξ⊥) = 4T

(8π)d/2

∫ ∞

τ/2
e−2ξ−2

⊥ y(y + 1/2�2)−d/2 1√
4 + 1

3γ 2y2 + γ 2

2 τ 2
(
1 − τ 2

8y2

) dy. (116)
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With respect to D0(t, t
′), by inserting the asymptotic behaviour of y(t) (equations (36)

and (37)) in equation (114), one immediately obtains

D0(t, t
′) ∼ e−2ξ−2

⊥ (t+t ′)/2. (117)

From expressions (116) and (117) it is clear that, in the limit t ′ � ξ2
⊥,D0(t, t

′) is negligible
with respect to DT (t, t ′) so that

D(t, t ′) � Dst(τ, ξ⊥) (118)

and Dst(τ, ξ⊥) is given in equation (116).

2. T = Tc(γ ). In this case the same results (115) and (116) are found for DT (t, t ′) but with
ξ−1
⊥ = 0. In particular, the large tm behaviour of D(t, t ′) is given by

Dst(τ,∞) = 4T

(8π)d/2

∫ ∞

τ/2
(y + 1/2�2)−d/2 1√

4 + 1
3γ 2y2 + γ 2

2 τ 2
(
1 − τ 2

8y2

) dy (119)

with corrections of order t
−d/2
m .

Regarding D0(t, t
′), from equations (36) and (37) one has

D0(t, t
′) ∼

(
t + t ′

2

)−(d+2)/2

(120)

with logarithmic corrections in d = 2.
Comparing equation (119) with equation (120) one can show that again, in the limit

t ′ � τs,D0(t, t
′) is negligible with respect to DT (t, t ′), as for T > Tc(γ ). Therefore

D(t, t ′) � Dst(τ,∞). (121)

The expression for Dst(τ,∞) is equation (119).

3. T < Tc(γ ). For T < Tc(γ ) we study the behaviour of DT (t, t ′) separately in the temporal
regimes τ/tm 	 1 (quasi-stationary regime) and τ/tm � 2/3 (τ/t ′ � 1) (aging regime).
In the quasi-stationary regime, the function ρ(u, τ, tm) of equation (112) is of order t

(d+2)/2
m

for u 	 1 and decreases to zero as ρ(u, τ, tm) ∼ u−(d+2)/2 when u > 1/γ tm. In the same
regime, � � 1 when u 	 1 while it diverges like (1 − u)−(d+2)/2 for u → 1 − t0/tm. In the
limits γ tm → ∞ and t0/tm → 0, the leading contributions to the integral of equation (111)
coming from the singularities of the functions ρ(u, τ, tm) for u → 0 and of �(u, τ, tm) for
u → 1 − t0/tm give

DT (tm, τ ) = 4T

(8π)d/2

t
−d/2
m

γ

[∫ ∞

τ/(2tm)

du ρ(u, τ, tm) +
√

3
∫ 1−t0/(2tm)

0
du �(u, τ, tm)

]
+ O

(
t−d/2
m

)

= Dst(τ,∞) +
4
√

12T

(8π)d/2dγ
t
−d/2
0 + O

(
t−d/2
m

)
. (122)

Similar considerations applied to the aging regime imply

DT (tm, τ ) = 4T

(8π)d/2

t
−d/2
m

γ

√
3√

1 + 3
2

(
τ
tm

)2(
1 − 1

8

(
τ
tm

)2)
∫ 1−t0/(2tm)

0
du �(u, τ, tm) + O

(
t−d/2
m

)

= 4T

(8π)d/2

√
12

dγ
t
−d/2
0

(
t

t ′

)− d+2
4

(1 + t ′/t)−
d+2

2
2

d+2
2√

4 2−(1−t ′/t)3

1+t ′/t
− 3 (2−(1−t ′/t)2)2

(1+t ′/t)2

+O
(
t−d/2
m

)
. (123)
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For D0(t, t
′) one finds

D0(t, t
′) =

(
M2 − 4T

(8π)d/2

√
12

dγ
t
−d/2
0

)(
t

t ′

)− d+2
4

(1 + t ′/t)−
d+2

2

× 2
d+2

2√
4 2−(1−t ′/t)3

1+t ′/t
− 3 (2−(1−t ′/t)2)2

(1+t ′/t)2

(124)

where the expression of C(�k = 0, t0) obtained in appendix C has been used and the limit
t ′ � τs is assumed.

Summarizing, summing up D0(t, t
′) (equation (124)) with DT (t, t ′) (equation (122)), in

the quasi-stationary regime one obtains

D(t, t ′) � Dst(τ,∞) + M2 (125)

with Dst(τ,∞) given in equation (119) while, in the aging regime, from equations (124) and
(123) one has

D(t, t ′) = Dag(t/t ′) = M2

(
t

t ′

)− d+2
4

(1 + t ′/t)−
d+2

2
2

d+2
2√

4 2−(1−t ′/t)3

1+t ′/t
− 3 (2−(1−t ′/t)2)2

(1+t ′/t)2

. (126)

thus defining the quantity Dag(t/t ′).
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